3.154 \(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=118 \[ \frac {(3 A-7 B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}+\frac {2 B \tan (c+d x)}{a d \sqrt {a \sec (c+d x)+a}} \]

[Out]

1/4*(3*A-7*B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A-B)*tan(d*
x+c)/d/(a+a*sec(d*x+c))^(3/2)+2*B*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {4008, 4001, 3795, 203} \[ \frac {(3 A-7 B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}+\frac {2 B \tan (c+d x)}{a d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((3*A - 7*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A -
B)*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + (2*B*Tan[c + d*x])/(a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\sec (c+d x) \left (-\frac {3}{2} a (A-B)-2 a B \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {2 B \tan (c+d x)}{a d \sqrt {a+a \sec (c+d x)}}+\frac {(3 A-7 B) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {2 B \tan (c+d x)}{a d \sqrt {a+a \sec (c+d x)}}-\frac {(3 A-7 B) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {(3 A-7 B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {2 B \tan (c+d x)}{a d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.87, size = 125, normalized size = 1.06 \[ \frac {\tan (c+d x) \left (\sqrt {1-\sec (c+d x)} (-A+4 B \sec (c+d x)+5 B)+\sqrt {2} (3 A-7 B) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \tanh ^{-1}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )\right )}{2 d \sqrt {1-\sec (c+d x)} (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((Sqrt[2]*(3*A - 7*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sec[c + d*x] + Sqrt[1 - Sec[c
 + d*x]]*(-A + 5*B + 4*B*Sec[c + d*x]))*Tan[c + d*x])/(2*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2)
)

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 386, normalized size = 3.27 \[ \left [\frac {\sqrt {2} {\left ({\left (3 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 7 \, B\right )} \cos \left (d x + c\right ) + 3 \, A - 7 \, B\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (A - 5 \, B\right )} \cos \left (d x + c\right ) - 4 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (3 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 7 \, B\right )} \cos \left (d x + c\right ) + 3 \, A - 7 \, B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (A - 5 \, B\right )} \cos \left (d x + c\right ) - 4 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(2)*((3*A - 7*B)*cos(d*x + c)^2 + 2*(3*A - 7*B)*cos(d*x + c) + 3*A - 7*B)*sqrt(-a)*log(-(2*sqrt(2)*s
qrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x +
 c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((A - 5*B)*cos(d*x + c) - 4*B)*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((3*A - 7*B)*c
os(d*x + c)^2 + 2*(3*A - 7*B)*cos(d*x + c) + 3*A - 7*B)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*((A - 5*B)*cos(d*x + c) - 4*B)*sqrt((a*cos(d*x + c) + a)/cos
(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

giac [A]  time = 2.50, size = 190, normalized size = 1.61 \[ -\frac {\frac {{\left (\frac {\sqrt {2} {\left (A a^{2} - B a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {\sqrt {2} {\left (A a^{2} - 9 \, B a^{2}\right )}}{a^{3} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {\sqrt {2} {\left (3 \, A - 7 \, B\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/4*((sqrt(2)*(A*a^2 - B*a^2)*tan(1/2*d*x + 1/2*c)^2/(a^3*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - sqrt(2)*(A*a^2 -
 9*B*a^2)/(a^3*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))*tan(1/2*d*x + 1/2*c)/sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a) - sq
rt(2)*(3*A - 7*B)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*s
gn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.77, size = 405, normalized size = 3.43 \[ -\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (3 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-7 B \cos \left (d x +c \right ) \sin \left (d x +c \right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 A \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-7 B \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+2 A \left (\cos ^{2}\left (d x +c \right )\right )-10 B \left (\cos ^{2}\left (d x +c \right )\right )-2 A \cos \left (d x +c \right )+2 B \cos \left (d x +c \right )+8 B \right )}{4 d \sin \left (d x +c \right )^{3} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/4/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(3*A*cos(d*x+c)*sin(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-7*B*cos(d*x+c)*si
n(d*x+c)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)+3*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-7*B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/
sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+2*A*cos(d*x+c)^2-10*B*cos(d*x+c)^2-2*A*cos(d*x+c)+
2*B*cos(d*x+c)+8*B)/sin(d*x+c)^3/a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^2/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________